首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 调和分析
Questions in category: 调和分析 (Harmonic Analysis).

求解方程 $\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2}=0$.

Posted by haifeng on 2020-12-01 18:54:57 last update 2020-12-31 09:41:50 | Answers (1)


傅立叶考虑了这样的半无穷的薄片 $D=[0,+\infty)\times[-\frac{\pi}{2},\frac{\pi}{2}]$,  与它相接的区域 $\Omega=(-\infty,0]\times[-\frac{\pi}{2},\frac{\pi}{2}]$ 是稳定热源, 设温度始终为常值 1.

$D$ 上初始温度为 0. 当 $D$ 和 $\Omega$ 相接后, 由于热传导, $D$ 上的温度开始增高, 试求出温度函数 $v(x,y)$.

这是 $v$ 所满足的初始条件:

\[
\begin{cases}
v(0,y)=1,&\forall\ y\in(-\frac{\pi}{2}, \frac{\pi}{2})\\
v(x,\pm\frac{\pi}{2})=0,&\forall\ x\in[0,+\infty)\\
\end{cases}
\]

求解方程 \[\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2}=0.\]

 

另外, 由物理常识, 对于距离 $\Omega$ 边界很远的点 $p\in D$, 其温度 $v(p)$ 会非常小. 

 

注: 从某种观点, 物理常识在求解这类方程时, 也可以算作解应满足的条件. 也就是说, 物理学家往往对方程加上了额外的符合物理实际的条件. 这些“直觉”能帮助我们求解数学方程.

 

 


References:

王青建 主编《科学名著赏析--数学卷》P.195  《热的解析理论》原文节选.

傅立叶[法]  著 《热的解析理论》